

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A Reinvestigation of the ^{13}C -NMR Chemical Shift Assignments of Fluoranthene

Milton D. Johnston Jr.^a; Gary E. Martin^a; Raymond N. Castle^b

^a Department of Medicinal Chemistry, College of Pharmacy University of Houston Houston, Texas ^b Department of Chemistry, University of South Florida Tampa, Florida

To cite this Article Johnston Jr., Milton D. , Martin, Gary E. and Castle, Raymond N.(1988) 'A Reinvestigation of the ^{13}C -NMR Chemical Shift Assignments of Fluoranthene', *Spectroscopy Letters*, 21: 8, 853 — 857

To link to this Article: DOI: 10.1080/00387018808082347

URL: <http://dx.doi.org/10.1080/00387018808082347>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

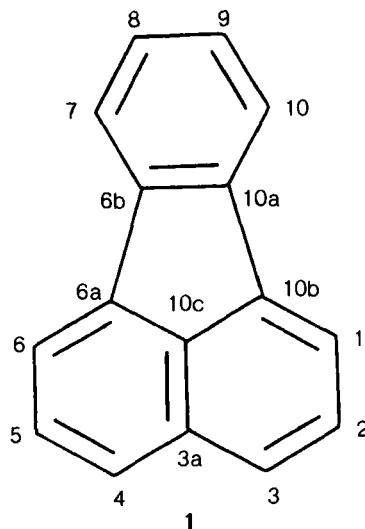
A REINVESTIGATION OF THE ^{13}C -NMR CHEMICAL SHIFT
ASSIGNMENTS OF FLUORANTHENE

Key Words: two-dimensional nmr; carbon-carbon double quantum coherence; fluoranthene

Milton D. Johnston, Jr.¹ and Gary E. Martin^{*}

Department of Medicinal Chemistry
College of Pharmacy
University of Houston
Houston, Texas 77204

and


Raymond N. Castle

Department of Chemistry
University of South Florida
Tampa, Florida 33620

ABSTRACT: Disparities in the protonated carbon NMR chemical shift assignments of the polynuclear aromatic molecule, fluoranthene, have been noted. Using two-dimensional ^{13}C - ^{13}C double quantum coherence, the ^{13}C -NMR chemical shift assignments were reinvestigated and a set of unequivocal assignments obtained.

INTRODUCTION

While carrying out investigations of various nitrofluoranthenes,² we noted discrepancies in the ^{13}C -NMR chemical shift assignments which have been reported for the parent fluoranthene(**1**) system.^{3,4} Before directing our attention to the assignment of any of the mononitrofluoranthene analogs, which was to be undertaken using long range heteronuclear chemical shift

correlation, we felt it necessary to resolve the disparity in the assignments for the parent fluoranthene ring system. An unequivocal set of assignments derived using ^{13}C - ^{13}C double quantum coherence are presented and discussed in this paper.

RESULTS AND DISCUSSION

Since fluoranthene is readily available and reasonably soluble in common deuterated solvents, the simplest way to establish unequivocal ^{13}C resonance assignments is through the two-dimensional ^{13}C - ^{13}C double quantum INADEQUATE experiment.⁵ In previous studies we have used the autocorrelated pulse sequence of Turner^{6,7} coupled with a 135° read pulse as suggested by Mareci and Freeman⁸ to assign the ^{13}C -NMR spectra of a series of complex helical polynuclear heteroaromatics.⁹⁻¹² Improved sensitivity can, however, be had by returning to a single evolution period.¹³ This was done to compensate for the slight losses incurred by employing the double selection pulse sequence proposed by

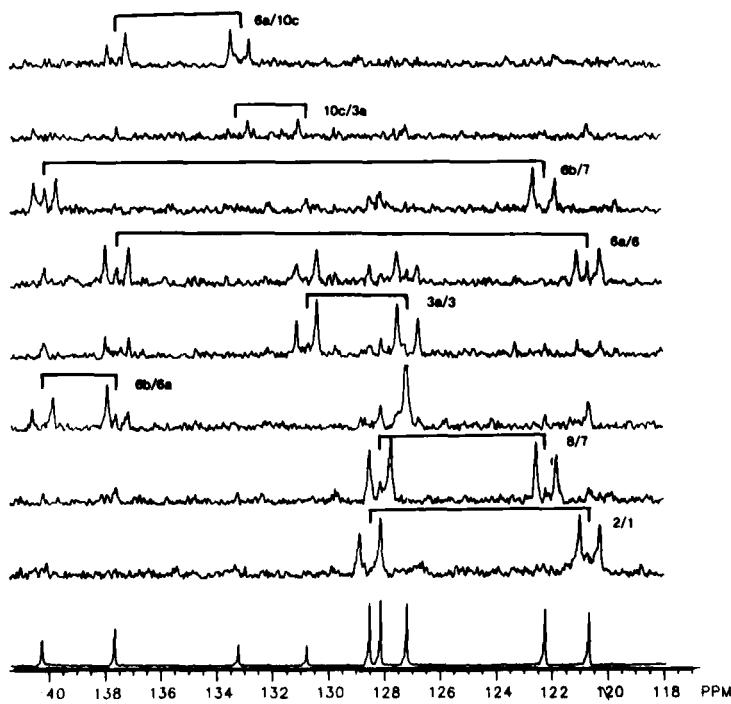


FIG. 1. Traces obtained from a ^{13}C - ^{13}C double quantum INADEQUATE experimental study of fluoranthene (1). Of all possible connectivities, only those between C2 and C3 and between C8 and C9 could not be observed. The broadening in the peaks is caused by the presence of $\text{Cr}(\text{acac})_3$.

Lallemand and co-workers¹⁴ to obtain better discrimination between the coherence transfer echo and the antiecho. Thus, the pulse sequence used contained a 135° pulse as the final pulse of the excitation interval and a 135° read pulse following the evolution period.

Individual slices showing eight of the ten possible ^{13}C - ^{13}C connectivities of fluoranthene (1) are shown in FIG. 1. From these data, it was possible to ascertain that the assignments for 1 reported by Ernst⁴ were indeed correct as shown on the

structure. Only the connectivities between C2 and C3 and C8 and C9 were not observed. The former could not be seen probably because this pair of resonances is more AB and AX in character and the latter, of course, because of the equivalence of C8 and C9.

EXPERIMENTAL

The two-dimensional ^{13}C - ^{13}C double quantum INADEQUATE spectrum was acquired overnight on a ca. 2M solution of fluoranthene in deuteriochloroform at 333°K as 40 x 2K complex points with 1K acquisitions/ t_1 increment using a Nicolet NT-300 spectrometer operating at 75.459 MHz for ^{13}C observation. The sample was doped with $\text{Cr}(\text{acac})_3$ to afford quaternary carbon relaxation times in the range of 700 msec allowing a 1.5 sec recycle time. The fixed delays in the excitation interval, t , were set to 5.0 msec, corresponding to an assumed 50 Hz ^{13}C - ^{13}C coupling constant. The evolution period, t_1 , was incremented as a function of the dwell time in F_2 . The parameter selection causes intentional folding of the double quantum frequency domain but provides correspondingly better digital resolution. The data were processed with a 5 Hz exponential multiplication prior to the first Fourier transformation and a 1 Hz exponential multiplication after zero-filling to 128 points prior to the second transformation.

Values of the chemical shifts obtained are as follows and, except for solvent effects deriving from both the high concentration of fluoranthene and the presence of $\text{Cr}(\text{acac})_3$, agree quite closely with those obtained by Ernst:⁴ C1(C6) = 120.71; C2(C5) = 128.55; C3(C4) = 127.232; C6a(C10b) = 137.83; C6b(C10a) = 140.44; C7(C10) = 122.31; C8(C9) = 128.17; C3a = 130.91; C10c = 133.40 ppm. Shifts are defined relative to the ^{13}C shift of deuteriochloroform defined as 77.00 ppm.

ACKNOWLEDGMENTS

The authors would like to acknowledge the generous support of this work by the Robert A. Welch Foundation through grant No.

E-792 to G. E. M. Also, sabbatical leave time granted to M. D. J. by the University of South Florida is also gratefully acknowledged.

REFERENCES AND FOOTNOTES

*To whom inquiries should be addressed.

1. On sabbatical leave from the Department of Chemistry, University of South Florida, Tampa, Florida 33620.
2. M. D. Johnston, Jr., G. E. Martin, and R. N. Castle, to be published.
3. A. J. Jones, P. D. Gardner, D. M. Grant, W. M. Litchman, and V. Boekelheide, J. Amer. Chem. Soc., **92**, 2386 (1970).
4. L. Ernst, Org. Magn. Reson., **8**, 161 (1976).
5. A. Bax, R. Freeman, T. A. Frenkel, and M. H. Levitt, J. Magn. Reson., **43**, 478 (1980).
6. D. L. Turner, Mol. Phys., **44**, 1051 (1981).
7. D. L. Turner, J. Magn. Reson., **49**, 175 (1982).
8. T. H. Mareci and R. Freeman, J. Magn. Reson., **48**, 158 (1982).
9. M. J. Musmar, M. R. Willcott, G. E. Martin, R. T. Gampe, Jr., M. Iwao, M. L. Lee, R. E. Hurd, L. F. Johnson, and R. N. Castle, J. Heterocyclic Chem., **20**, 1661 (1983).
10. M. J. Musmar, G. E. Martin, R. T. Gampe, Jr., M. L. Lee, R. E. Hurd, M. L. Tedjamulia, H. Kudo, and R. N. Castle, J. Heterocyclic Chem., **22**, 219 (1985).
11. J. G. Stuart, M. J. Quast, G. E. Martin, V. M. Lynch, S. H. Simonsen, M. L. Lee, R. N. Castle, J. L. Dallas, B. K. John, and L. F. Johnson, J. Heterocyclic Chem., **23**, 1215 (1986).
12. M. J. Musmar, A. S. Zektzer, G. E. Martin, R. T. Gampe, Jr., M. L. Tedjamulia, R. N. Castle, and R. E. Hurd, Magn. Reson. Chem., **24**, 1039 (1987).
13. A. Bax, T. H. Mareci, J. Magn. Reson., **53**, 360 (1983).
14. D. Piveteau, M. A. Delsuc, E. Guittet, and J. Y. Lallemand, Magn. Reson. Chem., **23**, 127 (1985).

Date Received: 06/21/88
Date Accepted: 07/29/88